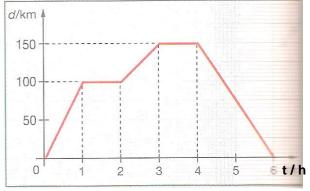

## ESCOLA SECUNDÁRIA DE OLIVEIRA DO BAIRRO FICHA DE TRABALHO DE CIÊNCIAS FÍSICO-QUÍMICAS - 9° ANO

| Movimentos                                                                          | Ficha de Trabalho 2                                                                                                                                           |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nome:                                                                               | N.º: Turma:                                                                                                                                                   |
| instante, a Catarina estava sentada e a Joana                                       | m de Lisboa ao Porto, de comboio. Em determinado<br>passeava no corredor do comboio. <b>Indica, para cada</b><br>rina e a Joana se encontram em repouso ou em |
| 1.1. Comboio: Catarina:                                                             | Joana:                                                                                                                                                        |
| 1.2. Árvores: Catarina:                                                             | Joana:                                                                                                                                                        |
| 1.3. Revisor: Catarina:                                                             | Joana:                                                                                                                                                        |
| 2. Em cada uma das situações seguintes ide cálculos convenientes.                   | entifica a hipótese correcta, justificando através dos                                                                                                        |
| 2.1. Um atleta de marcha percorre 25 m em 20                                        | segundos. Qual o valor da rapidez média da marcha?                                                                                                            |
| (A) 1,25 m/s;<br>(B) 0,8 m/s;<br>(C) 500 m/s;<br>(D) 45 m/s.                        |                                                                                                                                                               |
| 2.2. Uma campeã de natação efectuou uma p m/s. Quanto tempo demorou a prova?        | prova de 50 metros livres com a rapidez média de 1,97                                                                                                         |
| (A) 98,5 s;<br>(B) 25,4 s;<br>(C) 0,04 s;<br>(D) 1,97 s.                            |                                                                                                                                                               |
| <b>2.3.</b> Uma corrida pedestre que foi realizada co quantos metros foi a corrida? | om a rapidez média de 10,17 m/s, demorou 9,83 s. De                                                                                                           |
| (A) 1,3 m;<br>(B) 20 m;<br>(C) 100 m;<br>(D) 9,83 s.                                |                                                                                                                                                               |


3. O gráfico seguinte refere-se ao movimento de um automóvel ao longo de uma trajectória rectilínea.

3.1. Em que posição se encontrava o automóvel ao fim de 3 horas de viagem?

3.2. Em que intervalo de tempo a velocidade do automóvel foi maior?



3.4. Em que instante o automóvel inverteu o sentido do movimento?

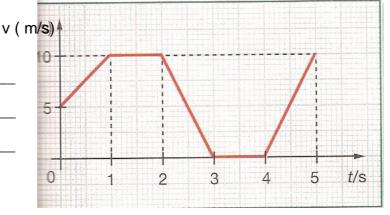


**3.5.** Calcula a **distância percorrida** em todo o percurso representado.

3.6. Calcula o valor do deslocamento ao fim das 6 horas de viagem.

4. O seguinte gráfico velocidade – tempo traduz o movimento de um corpo que se desloca sobre uma

trajectória rectilínea:


4.1. Classifica o movimento nos

seguintes intervalos de tempo:

(a) [0; 1]s; \_\_\_\_\_

**(b)** [1; 2]s; \_\_\_\_\_

**(c)** [2; 3]s; \_\_\_\_



4.2. Indica o valor da velocidade inicial.

4.3. Calcula a aceleração média no primeiro segundo de movimento.

4.4. Em que intervalo de tempo o corpo manteve a velocidade?

**4.5.** Em que intervalo de tempo o corpo esteve em repouso?

4.6. Calcula a distância percorrida nos primeiros 5 segundos de movimento.

5. Um automóvel desloca-se com uma velocidade de 25 m/s quando o condutor avista um obstáculo a 80 m. O tempo de reacção do condutor foi de 0.7 s, ao fim dos quais iniciou a travagem, vindo a parar 5 segundos depois de começar a travar.

**5.1. Traça** o gráfico **velocidade – tempo** que traduz a situação descrita.

**5.2.** Será que o condutor conseguiu evitar o acidente? **Justifica com cálculos**.